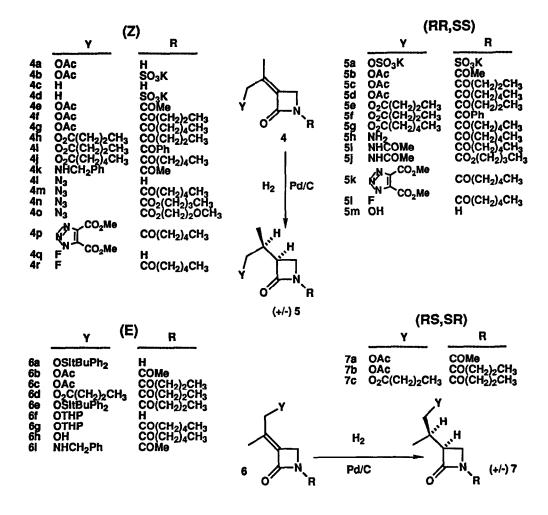
N-ACYL 3-ALKYLIDENYL- AND 3-ALKYL AZETIDIN-2-ONES: A NEW CLASS OF MONOCYCLIC β-LACTAM ANTIBACTERIAL AGENTS 2. SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF HETEROATOM SUBSTITUTED 3-ISOPROPYLIDENE AND 3-ISOPROPYL ANALOGS

Steven J. Brickner,* Jeffrey J. Gaikema, Laura J. Greenfield, Gary E. Zurenko and Peter R. Manninen

Upjohn Laboratories The Upjohn Company, Kalamazoo, MI 49001, USA

(Received 1 April 1993)

Abstract: O-, N-, or F-substituted 3-isopropylidene- and 3-isopropyl N-acyl azetidin-2-ones, lacking an ionizable moiety attached to the lactam nitrogen, have *in vitro* antibacterial activity, being particularly potent vs anaerobes.


3-Isopropylidenyl-(1) and 3-isopropyl (2) N-acyl azetidin-2-ones are novel synthetic monocyclic β-lactams exhibiting *in vitro* antibacterial activity *vs* anaerobes and Gram-positive aerobes.¹ A unique structural aspect differentiating azetidinones 1 and 2 from all other classes of β-lactam antibiotics is the lack of any negatively-charged group (eg., CHRCO₂ or SO₃) appended to the lactam nitrogen. Such anionic appendages are generally considered essential structural components, believed to play a role in attachment of substrate to the transpeptidases involved in bacterial cell wall biosynthesis.² A report that the related N-acyl 3-alkyl 4-acetoxy azetidin-2-ones inhibit human leukocyte elastase³ indicates a broadening interest in 3-alkyl N-acyl azetidinones.

At the conceptual stage in our lead-finding program to examine the utility of N-1 activated 3-alkylidene azetidin-2-ones as potential antimicrobial agents, we required a template with a suitable synthetic handle, allowing for functionalization about the β -lactam. The ability to readily introduce a wide variety of side-chains or functionalities was a desirable feature, allowing us to maximize the chances of finding structural attributes which would enhance delivery to, or binding of, the β -lactam at the targeted transpeptidase active site. In this regard, the 3-(hydroxyisopropylidene)azetidin-2-ones 3Z and 3E were synthesized. Herein we report the synthesis and

antibacterial activity of various heteroatom-substituted 3-isopropylidenyl- and 3-isopropyl N-acyl azetidin-2-ones, derived from these key intermediates.

The N-1 group we had initially selected for electronic activation of template 3 was the sulfonate.⁶ Treatment of E-siloxyisopropylidene azetidinone 6a⁵ with DMF-SO₃ resulted in silyl cleavage and resultant O,N-bis-sulfonation. Alternatively, the Z allylic acetate 4a was prepared from 3Z, and N-sulfonation followed by K⁺ ion exchange provided N-sulfonate 4b. This, and the similarly-derived 4d (from 4c⁵), as well as the O,N-bis-sulfonated isopropyl compound 5a (from 5m, the hydrogenation product of 3Z), were devoid of antibacterial activity.

The lead N-acyl azetidinone 4e originated as a minor by-product isolated during the preparation of 4a. As the β -lactam carbonyl IR absorption ($\nu = 1781 \text{ cm}^{-1}$) of this N-acetyl derivative was indicative of a highly-activated, electrophilic azetidinone carbonyl, ⁷ 4e was submitted for broad-spectrum antibacterial screening using

a standard agar diffusion assay. Surprisingly, this compound exhibited activity (29 mm zone, 80 µg/12.8 mm disk), specifically against the Gram-negative anaerobe, Bacteroides fragilis.

Systematic variation of the O- and N-acyl side-chain lengths was carried out in both the E (6b-d) and Z (4e-j) series. Mixed O,N-bisacyl analogs were derived by selectively monoacylating on the hydroxyisopropylidene moiety {(RCO)₂O, pyridine}, followed by N,N-dimethylaminopyridine (DMAP)-catalyzed anhydride acylation at N-1, or treatment with an acid chloride or chloroformate and Et₂N.

Catalytic hydrogenation (1 atm H_2 , Pd/C, EtOAc) of the Z isopropylidene analogs 4 produced the corresponding (+/-) (RR,SS)-dihydro derivatives 5 in high yields; reduction of E olefins 6 similarly yielded the diastereomeric (+/-) (RS,SR) 3-(substituted-isopropropyl) N-acyl azetidin-2-ones 7. Stoichiometric osmylation in pyridine of the E-isopropylidene 6c gave diol 8 (98%).

Most of our SAR studies concentrated on the 4 (Z) and 5 (RR,SS) series, given that they were found more active than the isomeric congeners (vide infra). However, one N-acyl E isopropylidene azetidinone was of particular interest, in that it shared the α -(hydroxyisopropylidene) β -lactam nucleus of the carbapenem dihydroasparenomycin.⁸ Attempted synthesis by exposure of the N-butyrylated silylether 6e to n-Bu₄NF resulted in decomposition of the β -lactam. Therefore, alcohol 3E was capped as the tetrahydropyranyl (THP) ether 6f, then N-hexanoylated to give 6g. While THP removal with p-toluene sulfonic acid in MeOH was successful, with tlc monitoring of the reaction course indicating a one-spot conversion, recovery of the crystalline 6h was only 24% after evaporative workup and flash chromatography (perhaps due to inherent instability).

Compound 4e, a γ -oxo allylic acetate, presented the opportunity to examine the potential use of such substrates for selective palladium-catalyzed π -allyl alkylations, in the presence of a highly-activated carbonyl electrophile. Treatment of 4e with 1.5 equiv of benzylamine {0.2 equiv Pd(P Φ_3)₄ and P Φ_3 , THF, 20°C, 42 h) indeed gave the isomeric¹⁰ amines 4k (16%) and 6i (18%). At THF reflux temperature (4.5 h), a complex mixture was obtained, from which were isolated γ -lactam 9 (51%), 6i (11%), and only traces of 4k.

Mesylation of 3Z (Et₃N, MsCl, THF, 0°C), followed by displacement with NaN₃, afforded crystalline azide 4I (98% from 3Z). DMAP-catalyzed N-hexanoylation gave 4m, treatment with BuOCOCl provided 4n, and methoxyethyl chloroformate gave 4o. Not unexpectedly, hydrogenation of 4m (10% Pd/C, 1 atm H₂, EtOAc) resulted in concomitant attack of the nascent amine on the β-lactam carbonyl, yielding γ-lactam 10 (90%). Intramolecular attack was averted by running the reduction in neat Ac₂O, effectively trapping the isopropylamine moiety in 5h as the acetamide 5i (93%); similarly, ester-activated lactam 4n gave 5j. 1,3-Dipolar cycloaddition of 4m and dimethylacetylene dicarboxylate gave 1,2,3-triazole 4p (20°C, 1 week, 100%), which was hydrogenated to 5k.

Treatment of 3Z with diethylaminosulfurtrifluoride (CH₂Cl₂, -30°C) provided fluoride 4q (16%, unoptimized). N-Hexanoylation gave the fluoroisopropylidene compound 4r; hydrogenation gave 5l (with a small amount of fluoride hydrogenolysis).¹¹

Biological Activity

Table I gives Minimal Inhibitory Concentration (MIC) values for selected organisms, and Table II gives zones of inhibition for anaerobes and Gram-positive aerobes. Unlike the lead Z-configured 4e, 6b and others esters in the E series, while active against both Gram-negative and Gram-positive anaerobes, were generally weaker in activity. Among the Z O,N-bisacyl compounds, the O-acetyl N-hexanoyl analog 4g was most active. Azide 4m and fluoride 4r exhibited a similar spectrum of activity (anaerobes and Gram-positives, including multiply-antibiotic resistant *\frac{1}{2} Staphylococcus aureus UC\&6685*), compared to the unsubstituted parent 1 *\frac{1}{2} X=CH_2*, R=(CH_2)_3CH_3*. Some of these esters were active against Mycobacterium avium. Benzylamines 4k and 6i, and

ORGANISMS	UC#	2a	5b	5c	5e	5g	7c	Az	Cl
Bacteroides thetaiotaomicron	6360	1*	128	64	32	8	128	>256	4
Bacteroides melaninogenicus	6523	NT	128	64	8	8	64	4	<0.12
Bacteroides fragilis	6428	2 ^{††}	256	>128	64	8	256	128	<0.12
Bacteroides distasonis	6518	NT	>256	>128	128	256	256	64	<0.12
Fusobacterium nucleatum	6324	NT	128	64	64	16	256	4	<0.12
Propionibacterium acnes	6564	NT	256	32	8	4	64	2	<0.12
Clostridium perfringens	6509	>128	>256	>128	128	128	>256	256	<0.12
Peptococcus variabilis	6320	NT	>256	64	256	128	256	128	1
Streptococcus pyogenes‡	152	256	>512	NT	>160	80	NT	NT	NT
Escherichia coli*	9379	>256	>512	NT	>160	>160	NT	NT	NT

TABLE I. MINIMAL INHIBITORY CONCENTRATIONS (µg/mL)

Abbreviations: NT, not tested; AZ, aztreonam; Cl, clindamycin; control is Moxalactam, MIC \ddagger = 0.5 µg/mL; MIC \ast =0.06 µg/mL; \dagger = tested against B. thetaiotaomicron UC 9014 (clindamycin = 2 µg/mL); \dagger = vs B. fragilis UC9370 (clindamycin = 1 µg/mL). MICs were determined using a standardized microbroth dilution method.

TABLE II. ZONES OF INHIBITION (Diameter mm, 1 mg/mL, 80 µL/12.7 mm disk).

COMPOUND	Bf	Ср	Sa 6685*	Sa 3665	Ма	Se*
2a	154	105RC	77	44	29	67
4e	29	0	0	0	0	0
4f	31	0	8	18	0	Tr
4g	30	0	12	19	19	7
4h	21	0	0	0	21	0
4i	0	Tr	0	16	Tr	0
4 j	0	0	0	0	15	0
4m	52	40RC	27	27	22	19
4n	37	36	39	30	22	32
40	0	20	20H	26H	0	14H
4p	17	0	Tr	0	0	0
4r	88	78	39	36	21	31
5b	52	36H	0	0	0	0
5c	78	33H	0	0	0	0
5d	165	>100RC	9	36	16	23
5e	>100	63	21H	28	19H	20H
5 f	24	33H	0	18H	0	0
5g	140	68RC	24H	31H	0	8
5i	76	45RC	Tr	19	0	Tr
5j	36	19	0	0	0	0
5k	65	35RC	0	0	0	0
51	130	79	38H	48	18	31
6b	22	22H	0	0	0	0
6c	31	29RC	0	0	0	0
6d	25	30	0	0	0	0
6g	0	23RC	0	0	15H	0
6h	27	28RC	0	0	Tr	0
7a	20	0	0	0	15H	0
7b	36	0	0	0	0	0
7e	41	33	Tr	0	0	14H
Clindamycin*	30	24	0	0	Tr	22

Abbreviations: Bf, Bacteroides fragilis UC6513; Cp, Clostridium perfringens UC6509; Sa 6685, Staphylococcus aureus UC6685¹²; Sa 3665, S. aureus UC3665; Ma, Mycobacterium avium UC159; Se, Staphylococcus epidermidis UC719; RC, resistant colonies present; H, hazy zone; Tr = trace; * = 6.5 mm disk used.

diol 8, were antibacterially-inactive. The (RR,SS) dihydro compounds 5 were much more active than the corresponding Z-olefinic analogs 4, in particular for the anaerobes (note the immensity of the zones for 5d, 5e, 5g, 5l). While the (RS,SR) dihydro compounds 7 were more active than their E-olefinic progenitors 6, the activity level was far less than the diastereomeric 5 series. The acetamidoisopropyl derivative 5i was less active than the acetoxyisopropyl bioisostere 5d. E Alcohol 6h demonstrated weak antibacterial activity. Compounds 5d and 5l were the most potent analogs in this study, albeit both were somewhat less active than the previously-described unsubstituted isopropyl parent $2a^1$ {X=CH₂, R=(CH₂)₃CH₃}. These lipophilic compounds generally demonstrated atypically-large zones of inhibition.

In summary, a variety of C-3 functionalized derivatives are accessible through modification of 3-(hydroxyisopropylidenyl)azetidin-2-ones. While N-sulfonated compounds are inactive, the N-acyl azetidinones have potent *in vitro* activity vs anaerobes (particularly *Bacteroides* species) and Gram-positive aerobes, yet do not contain acidic or charged moieties appended to N-1.¹³

Acknowledgement: The authors are grateful to Ms. Betty R. Yagi for in vitro technical assistance, and Dr. Richard C. Thomas for helpful discussion.

References and Notes

- 1. Brickner, S. J.; Gaikema, J. J.; Zurenko, G. E.; Greenfield, L. J.; Manninen, P. R.; Ulanowicz, D. A. J. Antibiotics 1992, 45, 213.
- Virudachalam, R.; Rao, V. S. R. Biomolecular Structure, Conformation, Function and Evolution; Vol. 2, Srinivasan, Ed.; Pergamon Press: Oxford, 1980, 525.
- 3. Firestone, R. A.; Barker, P. L.; Pisano, J. M.; Ashe, B. M.; Dahlgren, Tetrahedron 1990, 46, 2255.
- 4. Waxman, D. J.; Strominger, J. L. J. Biol. Chem. 1980, 255, 3964.
- 5. Brickner, S. J.; Gaikema, J. J.; Torrado, J. T.; Greenfield, L. J.; Ulanowicz, D. A. Tetrahedron Lett. 1988, 29, 5601.
- Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M.; Asai, M. Nature 1981, 289, 590. Sykes, R. B.; Cimarusti, C. M.; Bonner, D. P.; Bush, K.; Floyd, D. M.; Georgopapadakou, N. H.; Koster, W. H.; Liu, W. C.; Parker, W. L.; Principe, P. A.; Rathnum, M. L.; Slusarchyk, W. A.; Trejo, W. H.; Wells, J. S. Nature 1981, 291, 489.
- 7. Nishikawa, J.; Tori, K. J. Antibiotics 1981, 34, 1641, 1645.
- 8. Shoji, J.; Hinoo, H.; Sakazaki, R.; Tsuji, N.; Nagashima, K.; Matsumoto, K.; Takahashi, Y.; Kozuki, S.; Hattori, T.; Kondo, E.; Tanaka, K. J. Antibiotics 1982, 35, 15.
- 9. For a related γ-oxo allylic alkylation see: Keinan, E.; Sahai, M.; Kirson, I. J. Org. Chem. 1983, 48, 2550.
- 10. Facile isomerization of π -allyl palladium intermediates via a σ -bonded palladium complex has been reported. Cf: Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1980, 102, 4730.
- Partial disclosure of this data has been previously presented: Brickner, S. J.; Gaikema, J. J.; Engelhardt,
 L. J.; Mydlow, P. K.; Zins, B. J.; Torrado, J. T. Abstract No. 1217, 27th Intersci. Conf. on Antimicrob.
 Agents Chemother., p. 309, New York, October 4-7, 1987. Brickner, S. J.; Gaikema, J. J.; Greenfield, L.
 J.; Mydlow, P. K.; Ulanowicz, D. A.; Manninen, P. R. Abstract No. P 11, p. 57, 4th Intern. Symp.: Recent Advances in the Chemistry of β-Lactam Antibiotics, Cambridge UK, July 3-6, 1988.
- 12. Staphylococcus aureus UC®6685 is resistant to multiple antibiotics, including: penicillin, methicillin, cephalothin, tetracycline, clindamycin, novobiocin, kanamycin, and erythromycin.
- Studies concerning the mechanism of action and β-lactamase stabilities of these unusual β-lactams will be reported elsewhere.